Kaufman Adaptive Moving Average
KAMA adapts to market volatility, offering a more responsive moving average.
Method
tm.ta.kama(source, timeperiod)
Inputs
Parameter | Argument type | Description | Default Value |
---|---|---|---|
source | pd.Series | Input data series | - |
timeperiod | int | Number of periods for the indicator | 30 |
Outputs
Output | Type |
---|---|
kama | np.ndarray |
Example usage
import tradomate as tm
@tm.strategy()def my_strategy(config: tm.TradomateConfig, data: tm.TradomateData):
# Trying out Kaufman Adaptive Moving Average kama = tm.ta.kama(data.close, timeperiod=30)
# Get the last value and print last_value = kama.iloc[-1] tm.log(f"Last value of Kaufman Adaptive Moving Average is {last_value}")
# Plot the values of kama tm.plot(kama, title="Kaufman Adaptive Moving Average", overlay=False)